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Abstract
The impact of the length of the evolutionary window (EW) on 

the estimation of the predictability limit of the Lorenz-63 model 
using the nonlinear local Lyapunov exponent (NLLE) method is 
studied. The structure of the initial errors and error growth dynam-
ics are analyzed. It is found that there exists an optimal EW, at 
which the estimated predictability limit is closest to its theoretical 
value. With a shorter EW, the predictability limit is underesti-
mated, while at longer EWs it is overestimated. The optimal EW 
is approximately equal to the decorrelation time of the system. A 
preliminary explanation for this link, based on the loss of informa-
tion from the initial state, is given.

(Citation: Huai, X., J. Li, R. Ding, and D. Liu, 2017: Optimal 
evolutionary window for the nonlinear local Lyapunov exponent. 
SOLA, 13, 125−129, doi:10.2151/sola.2017-023.)

1. Introduction

The field of predictability has been extensively studied, 
beginning with the pioneering work of Thompson (1957). In 
particular, the idea of limits of predictability is considered to be 
of great importance (Lorenz 1963; Chou 1989). Three approaches 
were proposed for investigating this problem, i.e. the empirical 
approach, the dynamical approach, and the dynamical-empirical 
approach (Lorenz 1969b). The first is based upon the occurrence 
of natural analogues and use them to make forecast about the 
future events (Lorenz 1969a; Gutzler and Shukla 1984). The 
second is based upon equations of the atmosphere and is referred 
as the numerical weather prediction (Smagorinsky, 1963; Lorenz 
1982). The last approach “is partly dynamical and partly empir-
ical” as noted by Lorenz (1969b) and takes errors of different 
scales into account (1969c). Up to now, most studies concerning 
the limit of predictability are based upon models (Lorenz 1965; 
Leith 1983; Simmons et al. 1995; Mu et al. 2002). Recently, sev-
eral studies have shown that the limit of predictability achieved 
through models would depend on the calculation, the accuracy of 
computers and the numerical model itself (Feng et al. 2001; Li 
et al. 2000; Li et al. 2001; Li et al. 2006)

In view of the limitations of quantifying the predictability 
limit by models as mentioned above, a theoretical approach based 
upon the nonlinear error growth dynamics was introduced. The 
so-called nonlinear local Lyapunov exponent (NLLE) method has 
been shown to be efficient at estimating predictability limits of 

chaotic systems. (Chen et al. 2005; Ding and Li 2007; Ding et al. 
2008a, 2008b; Li and Wang, 2008; Li and Ding 2011, 2013, 2015; 
Ding et al. 2015). The value of the NLLE depends on the initial 
condition in phase space, the magnitude of initial errors and the 
time. For chaotic systems whose governing equations are explic-
itly known, it is possible to simply integrate two analogous initial 
states forward in time and compare their trajectories. 

However, in practice, the governing equations are unknown 
for chaotic systems. Often only one or several variables of the 
system are available for observations. In such cases, the dynamics 
of the chaotic system are hard to retrieve. Alternatively, some turn 
to the natural analogs, which mean that two states resemble each 
other in the atmospheric observational datasets. By observing the 
trajectory of the analogous point, we can gain knowledge about 
the trajectory of the referential point, thus the rate of error growth 
can be determined as long as the analogous trajectory mimics the 
referential trajectory (Lorenz 1969a; Gutzler and Shukla 1984). 
Van den Dool (1994) estimated that good-quality analogs could be 
calculated from current data libraries, if the analogs were restricted 
to a small area and a small number of degrees of freedom. In view 
of this, a local dynamical analog (LDA) method was introduced 
for calculating the NLLE from experimental or observational 
time series (Li and Ding 2011). The methodology for LDA is 
based upon the assumption that two states can be considered to be 
analogous if their evolutionary trajectories are similar over a short 
period of time, which is referred to as an evolutionary window 
(EW). In other words, EW is a time interval during which the 
evolutionary distance between two states are calculated. Hence, 
not only the initial information but also the evolutionary informa-
tion of the referential point and the analogous point are taken into 
consideration. Only when the sum of the initial distance and the 
evolutionary distance is minimized over all sampling points can 
we term this specific point as a LDA of the referential point. The 
algorithm of the LDA is applied to the Lorenz-63 model as well 
as real atmosphere. Li and Ding (2011) investigated the temporal- 
spatial distribution of atmospheric predictability limit by the LDA 
method. Ding et al. (2015) estimated the limit of decadal-scale 
climate predictability using observational data.

By definition, the accumulated error between the referential 
trajectory and the analogous trajectory is a function of the EW. 
This implies that the choice of EW will be an important factor in 
determining the success of LDA. There are three more questions 
to be further explored and have not yet been discussed in previous 
studies. First, what influence does the EW have on the initial error 
and the error growth of the LDA? Second, what is the connection 
between the EW and the predictability limit calculated using 
NLLE? Finally, how should the correct EW be selected such that 
the predictability limit estimated is close to the theoretical value? 
This paper aims to investigate these important questions so as to 
further improve the NLLE estimation method.

The remainder of the paper is arranged as follows. A brief 
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The total distance then includes not only the initial separation 
but also the evolved separation distance, i.e.,

dt = d0 + de.	 (4)
Therefore, dt can be considered to be a good metric by which 

to find the LDA in phase space of each reference point, that 
means, given a specific EW τ, we check each point in the time 
series {x (tj), j = 0, 1, 2 … m − 1} to be its LDA by locating the 
minimum value of dt. Suppose dt acquires its minimum value at 
t = tk, x (tk) is said to be the LDA of x (t0). To conclude, the LDA 
of x (t0) is defined by a point x (tk) of which dt has the minimum 
value over all sampling points.

Of course, this approach may not exclude points for which x 
and the most closely related variables remain close in value while 
other variables evolve rather differently, a situation that is espe-
cially relevant in high-dimensional chaotic systems. Therefore, the 
analogs calculated based on the variable x can be regarded only as 
local analogs. However, by considering both initial distance and 
evolved distance, we will demonstrate here whether the method 
is capable of finding true analogs across all directions in phase 
space, especially when using the appropriate EW tk, as shown in 
Section 3.

2.3 Experiment design
We used N = 5 × 104 points in our experiment. For each 

reference point, we found its LDA using the algorithm described 
above. Integrating the Lorenz-63 model from each reference 
point, the geometric mean error (GME) can be calculated at each 
timestep l (l = 0, …, 3000) as

GME( ) | ( ) ( ) |,l f l g l
p

N
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=
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where fp and gp are the reference trajectory and its analogous tra-
jectory at each point, respectively, p = 1, …, N. The use of GME 
in error dynamics is thoroughly discussed by Ding and Li (2011). 
We calculate GME curves by incrementing K from 0 to 1200 in 
steps of 10. Thus the EW ranges from 0 to 12 by 0.1. The predict-
ability limit is then estimated as 85% of the saturation error level 
in order to remove the problem of small fluctuations in the satu-
rated error (Ding and Li 2011). All of the following calculations 
are based on the time series of variable x, unless explicitly stated.

3. Results and discussion

From the algorithm stated above, we know that the value of 
an EW is crucial to the LDA method. To illustrate this, we first 
measure the impact of an EW on the magnitude of the initial error 
between the reference point and its LDA. Here, the initial error 
of each variable is defined as the absolute difference between the 
referential point and its LDA, while the total error is the sum of 
initial errors in all variables. 

When the EW length is set to zero, only Eq. (2) is applied to 
find the LDA. Since there is no evolutionary distance included, 
we would have dt = d0. Without considering the evolutionary 
information, the projection of the analog state on the x-axis being 
close to the reference state does not guarantee that initial errors 
will also be small in other directions. In fact, initial errors on the 
y- and z-axis are several magnitudes larger (Figs. 2b and 2c), and 
so the total errors are also quite large (Fig. 2d). With EW equal 
to zero, the method is thus liable to produce false analogs. As 
EW is increased, the initial errors on the x-axis become larger, 
but still are relatively small compared with its standard deviation 
(7.9 for variable x) (Fig. 2a). Meanwhile, the initial errors in other 
directions are reduced dramatically and become much smaller 
than their individual standard deviations. The total errors are now 
much smaller, indicating that the method is finding true analogs 

description of the LDA method and the basic setup of our numer-
ical experiment are given in Section 2. Section 3 presents the 
results of a quantitative comparison of different EWs using the 
Lorenz-63 system, followed by some preliminary interpretations. 
Finally, a summary is presented in Section 4.

2. Model and methods

2.1 Lorenz-63 model
The Lorenz-63 model (Lorenz 1963) can be expressed as
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where the parameters used are σ  = 10, r = 28, and b = 8/3. The 
integration scheme used here is the fourth-order Runge–Kutta 
method, with a stepsize h = 0.01. We use the Lorenz-63 model 
so that error growth can be calculated theoretically as well as 
estimated numerically. Also, the Lorenz-63 model is simple and 
well-studied.

2.2 LDA algorithm
For a chaotic system, often we cannot observe all the variables 

of it. In many cases, only one or several variables are available for 
observation. How can we estimate the predictability limit based 
on a single time series? That’s what the NLLE is for. What we are 
trying to explore in our manuscript is how to improve the NLLE 
in estimating the predictability limit given only one or several 
variables are available for observations for a chaotic dynamical 
system. Suppose we can observe variable x from an n-dimensional 
system denoted by the time series {x (tj), j = 0, 1, 2 … m − 1}, 
where m is the length in time steps of the series. We now describe 
an algorithm for finding local analogs, following Li and Ding 
(2011).

For x (t0), a reference point at time t0, we seek its LDA, 
denoted by x (tk), from the raw series { x (tj), j = 0, 1, 2 … m − 1}. 
Besides the initial distance between two points, the distance after 
an evolutionary period is also considered. For a random point 
x (tj) (| tj − t0| > td, where td is the decorrelation time, or the time 
required for the autocorrelation of the time series to drop to zero to 
ensure that a good analog found is not purely due to persistence), 
the initial distance is given by (see Fig. 1):

d0 = |x (tj) − x (t0) |.	 (2)
We assume that two points are analogous if they evolve in a 

similar manner over a short time interval τ = K * Δ, where Δ is the 
sampling interval of the time series (i.e., Δ = ti − ti −1) and Δ equals 
0.01. K is the number of sampling intervals. The time interval 
τ is an EW as previously defined. Within this certain EW, the 
evolutionary distance de between the two points x (t0) and x (tj) is 
defined as

Fig. 1. A schematic representation of the LDA method. The referential 
trajectory (solid line) starts from time t0. An analogous trajectory (dashed 
line) starting from time tj is checked with an evolutionary window τ.
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(Fig. 2d). However, the distribution of the initial errors varies with 
EW. Figure 2d shows that the distribution of initial errors for all 
points used is become increasingly spread as EW increases from 
0. There appears to exist an optimal value of EW between 0 and 3 
for which the initial errors are least spread.

Examination of error growth dynamics can provide a clear 
view of the impact of EW on LDA. Figure 3 shows the GME of 
the variable x for several representative values of EW, along with 
the theoretical error evolution for an initial error of magnitude 
10−2. The choose of initial error is based on the fact that initial 
distance for variables x, y, and z between the reference point and 
is LDA has their maximum probability distributions at the magni-
tude of 0.01 (not shown). The theoretical error growth equations 
are based on Equation (25) of Li and Ding (2011), from which the 
practical predictability limit can be acquired. All the curves con-
verge to the same saturation level (Wang et al. 2012), and show 
almost the same error growth rates in the nonlinear error growth 
period. However, error growth rates vary considerably with EW 

in the linear error growth period. For an EW of zero, the error 
grows most rapidly, which is likely to lead to a shorter estimated 
predictability limit. As EW increases to 3, the error growth rate 
at the beginning of the integration period is almost identical to 
the theoretical one though a slight deviation after time exceeds 6. 
Afterwards, the error growth rate in the initial period falls below 
the theoretical value when EW becomes larger than 3. As a result, 
the predictability limit will be overestimated compared with its 
theoretical value.

From the initial errors and the error growth dynamics, it’s easy 
to conjecture that there is a specific EW where the ratio of good 
analogs is the highest than other EWs. With this EW used in the 
LDA method, the estimated predictability limit would be closest 
to that calculated from the error growth equations. In fact, the 
accumulated differences between GME and the theoretical error 
from time 0 to 30 form a quadratic function of EW (Fig. 4b). The 
function possesses a minimum at a time slightly less than 3. This 
minimum value is always the same regardless of the accumulated 
period (Fig. 4a). In fact, we tested several accumulated time, and 
the minimum values stay the same (figure not shown). The EW 
corresponding to the minimum value of accumulated error is a 
unique property of the LDA method and is termed as the optimal 
evolutionary window (OEW).

The estimated predictability limits are shown as a function 
of EW in Fig. 5. The point of intersection between the estimated 
predictability limit curve and the practical predictability limit 
corresponds to the OEW. Below (above) this point, the predict-
ability limit is underestimated (overestimated). Nevertheless, the 

Fig. 2. Box plot of absolute error in the variables x (a), y (b), and z (c), and 
the total error (d) in the Lorenz-63 system, for different EW lengths. The 
upper whiskers extend to 1.5 times the interquartile range above the upper 
quartile.

Fig. 3. GME of the variable x as estimated by the LDA method using dif-
ferent values of EW (colors), and the theoretical error of x, calculated from 
the Lorenz-63 error growth equations for an initial perturbation of magni-
tude of 10−2 (black).

Fig. 4. (a) Accumulated absolute difference between GME and the theoretical error as a function of time and EW. (b) Accumulated absolute difference at 
time 30 as a function of EW.
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estimated predictability limit is in reasonable agreement with the 
practical predictability limit when EW is close to OEW.

To conclude, the OEW is a specific time interval for calcu-
lating the evolutionary distance in the LDA method by which the 
error growth rate is most similar to the real one. With OEW used 
in the NLLE method, the accumulated error from the theoretical 
error growth is smaller, the ratio of good analogs is higher and the 
estimated predictability is more accurate. However, the value of 
OEW is yet to be explained. Previous studies have shown that the 
influence of the initial field decays over time (Li and Chou 1997). 
Information from the initial state can be formally considered to 
be lost when the autocorrelation of the series drops to zero. In 
the LDA method, we improve the collinearity between integral 
vectors by minimizing the difference between the reference and 
analogous trajectories. As EW is increased, nonlinearity begins to 
dominate the error growth, which disrupts the LDA method. When 
EW exceeds the decorrelation time, there is no true signal from 
the initial state remaining from which to identify analogs. On the 
contrary, the noise included will make it harder to find good ana-
logs. It may be concluded, therefore, that the decorrelation time 
is approximately equal to the OEW. To confirm this, the autocor-
relogram for the Lorenz-63 model, using 1000 different random 
initial states, is plotted in Fig. 6. The autocorrelation drops rapidly 
between times of 0 and 0.5. The rate of decay then decreases, until 
the autocorrelation finally reaches zero at a time of around the 
length of the OEW. After this point, information from the initial 
field is totally lost.

4. Conclusions

In this paper, the impact of EW on estimation of the predict-
ability limit using NLLE has been studied. As EW is increased 
from zero, the distribution of the initial errors becomes less 
spread. More analogs are good analogs among all the reference 
points used. Thus the error growth rates based on the LDA 
method converge to the theoretical growth rate. Eventually, the 
estimated predictability limit approached to the accurate practical 
predictability limit. However, above a certain value of EW, the 
distribution of the initial errors becomes more spread. The ratio 
of good analogs decrease, which leads to the error growth curves 
diverge from the theoretical error growth curve. As a result, the 
predictability limit is overestimated. Between them, there exists an 
OEW for the NLLE method for which the error growth dynamics 
most closely follow theoretical calculations. At the OEW, the ratio 
of good analogs is higher which leads to a closer of error growth 
to the theoretical one. Ultimately, the predictability limit is esti-
mated most accurately. For the Lorenz-63 system, this OEW is the 
time at which the autocorrelation falls to zero. As can be seen that 
the estimated predictability limit is close to the theoretical value 
whenever EW is fairly close to the OEW. So long as the EW used 
is close to OEW, further refinement of the OEW estimate will not 
be necessary.

Further investigation shows that the OEW may be related 
to the largest Lyapunov exponent (LLE) of the chaotic systems. 
By comparing the LLE with the OEW of the Lorenz-63 system 
with parameters σ = 16, b = 4.0 and parameter r varies from 51 
to 100 by 1, we conclude that the larger the LLE, the shorter the 
OEW (Fig. 7). The reason behind this is that with a larger LLE, 
the divergent rate of initial filed increases, thus lead to a shorter 
autocorrelation time and thus a shorter OEW. 

More work remains to be done, including repeating the 
study using other chaotic dynamical models and eventually, the 
real atmosphere. Also, the LDA method should be more widely 
exploited. We plan to carry out such a study in future work.
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Fig. 6. Autocorrelogram for the Lorenz-63 model, from 1000 different ran-
dom initial points (black lines) and their average (red solid line). The red 
dashed circle indicates the vicinity of the OEW.

Fig. 7. Scatter plot of the OEW and the LLE of the Lorenz-63 system with 
parameter r ranges from 51 to 100 by 1. Parameters σ = 16, b = 4.0.

Fig. 5. Estimated predictability limit of x as a function of EW (solid 
curve). Predictability limit is defined as the time at which the error reaches 
85% of its saturation level. The solid horizontal line indicates the predict-
ability limit calculated from the theoretical error, and the dashed vertical 
line highlights the point of intersection between the estimated and practi-
cal limits.



129SOLA, 2017, Vol. 13, 125−129, doi:10.2151/sola.2017-023

(GASI-IPOVAI-03).

Edited by: J. Ruiz

References

Chou, J. F., 1989: Predictability of the atmosphere. Adv. Atmos. 
Sci., 6, 335−346.

Chen, B. H., J. P. Li, and R. Q. Ding, 2006: Nonlinear local  
Lyapunov exponent and atmospheric predictability research. 
Sci. China, Ser. D, 49, 1111−1120.

Ding, R. Q., and J. P. Li, 2007: Nonlinear finite-time Lyapunov 
exponent and predictability. Phys. Lett. A, 364, 396−400.

Ding, R. Q., and J. P. Li, 2011: Comparisons of two ensemble 
mean methods in measuring the average error growth and 
the predictability. Acta. Meteor. Sin., 25, 395−404.

Ding, R. Q., J. P. Li, and K.-J. Ha, 2008a: Trends and interdecadal 
changes of weather predictability during 1950s−1990s. J. 
Geophys. Res., 113, D24112, doi:10.1029/2008JD010404.

Ding, R. Q., J. P. Li, and K. J. Ha, 2008b: Nonlinear local Lya-
punov exponent and quantification of local predictability. 
Chinese Phys. Lett., 25, 1919−1922.

Ding, R. Q., J. P. Li, F. Zheng, J. Feng, and D. Q. Liu, 2015: Esti-
mating the limit of decadal-scale climate predictability using 
observational data. Climate Dyn., 46, 1563−1580.

Feng, G. L., X. G. Dai, A. H. Wang, and co-authors, 2001: The 
study of the predictabil-ity in chaotic systems. Chin. Phys., 
50, 606−611 (in Chinese).

Feng, J., R. Q. Ding, D. Q. Liu, and J. P. Li, 2014: The application 
of nonlinear local Lyapunov vectors to ensemble predictions 
in the Lorenz systems. J. Atmos. Sci., 71, 3554−3567.

Gutzler, D. S., and J. Shukla, 1984: Analogs in the wintertime 500 
mb height field. J. Atmos. Sci., 41, 177−189.

Leith, C. E., 1983: Predictability in theory and practice. Large-
Scale Dynamics Processes in the Atmosphere. Hoskins, B., 
and R. Pearce, Eds., Academic Press, 391−405.

Li, J. P., and J. F. Chou, 1997: Existence of the atmosphere attrac-
tor. Science in China Series D: Earth Sciences, 40, 215−220.

Li, J. P., Q. C. Zeng, and J. F. Chou, 2000: Computational uncer-
tainty principle in nonlinear ordinary differential equations I. 
numerical results. Sci. China (Ser. E), 43, 449−460.

Li, J. P., Q. C. Zeng, and J. F. Chou, 2001: Computational uncer-
tainty principle in nonlinear ordinary differential equations 
II. theoretical analy-sis. Sci. China (Ser. E), 44, 55−74.

Li, J. P., R. Q. Ding, and B. H. Chen, 2006: Review and prospect 
on the predictability study of the atmosphere. Review and 
Prospects of the Developments of Atmosphere Sciences in 
Early 21st Century, China Meteorology Press, 96−104.

Li, J. P., and R. Q. Ding, 2011: Temporal–spatial distribution of 
atmospheric predictability limit by local dynamical analogs. 
Mon. Wea. Rev., 139, 3265−3283.

Li, J. P., and R. Q. Ding, 2013: Temporal–spatial distribution of 
the predictability limit of monthly sea surface temperature 
in the global oceans. Int. J. Climatol., 33, 1936−1947, doi: 
10.1002/joc.3562.

Li, J. P., and R. Q. Ding, 2015: Seasonal and interannual weather 
prediction. In: North G., Encyclopedia of Atmospheric 
Sciences (2nd edition), J. Pyle and F. Zhang, Eds., Academic 
Press and Elsevier, 6, 303−312.

Li, J. P., and S. Wang, 2008: Some mathematical and numerical 
issues in geophysical fluid dynamics and climate dynamics. 
Commun. Comput. Phys., 3, 759−793.

Lorenz, E. N., 1963: Deterministic Nonperiodic Flow. J. Atmos. 
Sci., 20, 130−141.

Lorenz, E. N., 1965: A study of the predictability of a 28-variable 
atmospheric model. Tellus, 17, 321−333.

Lorenz, E. N., 1969a: Atmospheric Predictability as Revealed by 
Naturally Occurring Analogues. J. Atmos. Sci., 26, 636−646.

Lorenz, E. N., 1969b: Three Approaches to Atmospheric Predict-
ability. Bull. Amer. Meteor. Soc., 50, 345−349.

Lorenz, E. N., 1969c: The predictability of a flow which possesses 
many scales of motion. Tellus, 21, 289−307.

Lorenz, E N., 1982: Atmospheric predictability experiments with 
a large numerical model. Tellus, 34, 505−513.

Lorenz, E. N., 1996: Predictability: A problem partly solved. Pro-
ceeding of Seminar on Predictability, Vol. I, Reading, United 
Kindom, ECMWF, 1−18.

Mu, M., W. S. Duan, and J. C. Wang, 2002: The predictability 
problems in numerical weather and climate prediction. Adv. 
Atmos. Sci., 19, 191−204.

Simmons, A. J., R. Mureau, and T. Petroliagis, 1995: Error growth 
and estimates of predictability from the ECMWF forecasting 
system. Quart. J. Roy. Meteor. Soc., 121, 1739−1771.

Smagorinsky, J., 1963: General circulation experiments with the 
primitive equations: I. The basic experiment. Mon. Wea. 
Rev., 91, 99−164.

Thompson, P. D., 1957: Uncertainty of initial state as a factor in 
the predictability of large scale atmospheric flow patterns. 
Tellus, 9, 275−295.

Van den Dool, H. M., 1994: Searching for analogues, how long 
must we wait? Tellus A, 46, 314−324.

Wang, P. F., J. P. Li, R. Q. Ding, and co-authors, 2012: Studies 
of the attractor property of error equations for the Lorenz 
system. Climatic Environ. Res., 17, 574−582 (in Chinese).

Manuscript received 24 March 2017, accepted 1 June 2017
SOLA: https://www. jstage. jst.go. jp/browse/sola/


